
TOP 10 Object-
Oriented and 

SOLID Desing 
Principles for 
Programmer

1. DRY (Don’t repeat yourself)
It’s important not to abuse it, 

duplication is not for code, but for 
functionality.

2. Encapsulate What Changes It’s easy to test and maintain 
proper encapsulated code.

3. Open Closed Design 
Principle

The key benefit of this design 
principle is that already tried and 
tested code is not touched which 

means they won’t break.

4. Single Responsibility 
Principle (SRP)

The key benefit of this principle is 
that it reduces coupling between 
the individual component of the 

software and Code.

5. Dependency Injection or 
Inversion Principle

The beauty of this design principle 
is that any class which is injected 
by DI framework is easy to test 

with the mock object and easier to 
maintain because object creation 

code is centralized in the 
framework and client code is not 

littered with that.

9. Programming for Interface 
not implementation

A programmer should always 
program for the interface and not 
for implementation; this will lead to 
flexible code, which can work with 

any new implementation of the 
interface.

8. Interface Segregation 
Principle (ISP)

Another benefit of this design 
principle in Java is, the interface 

has the disadvantage of 
implementing all method before any 
class can use it so having single 

functionality means less method to 
implement.

10. Delegation Principles

In order to compare two objects 
for equality, we ask the class itself 

to do comparison instead 
of Client class doing that check.

7. Liskov Substitution Principle 
(LSP)

If a class has more functionality 
than subclass might not support 

some of the functionality and does 
violate LSP.

6. Favor Composition over 
Inheritance

Some of you may argue this, but I 
found that Composition is the lot 
more flexible than Inheritance.

Source: 10 Coding Principles Every Programmer Should Learn - DZone JavaDr. Kleinhirn.eu

https://dzone.com/articles/10-coding-principles-every-programmer-should-learn

