
Clean
Code

General rules

1 Follow standard conventions.

2 Keep it simple stupid. Simpler is always
better. Reduce complexity as much as
possible.

3 Boy scout rule. Leave the campground
cleaner than you found it.

4 Always find root cause. Always look for the
root cause of a problem.

Design rules

1 Keep configurable data at high levels.

2 Prefer polymorphism to if/else or switch/case.

3 Separate multi-threading code.

4 Prevent over-configurability.

5 Use dependency injection.

6 Follow Law of Demeter. A class should
know only its direct dependencies.

Understandability tips

1 Be consistent. If you do something a
certain way, do all similar things in the same
way.

2 Use explanatory variables.

3 Encapsulate boundary conditions.
Boundary conditions are hard to keep track of.
Put the processing for them in one place.

4 Prefer dedicated value objects to primitive type.

5 Avoid logical dependency. Don't write
methods which works correctly depending on
something else in the same class.

6 Avoid negative conditionals.

Names rules

1 Choose descriptive and unambiguous names.

2 Make meaningful distinction.

3 Use pronounceable names.

4 Use searchable names.

5 Replace magic numbers with named
constants.

6 Avoid encodings. Don't append prefixes or
type information.

Functions rules

1 Small.

2 Do one thing.

3 Use descriptive names.

4 Prefer fewer arguments.

5 Have no side effects.

6 Don't use flag arguments. Split method
into several independent methods that can be
called from the client without the flag.

Comments rules

1 Always try to explain yourself in code.

2 Don't be redundant.

3 Don't add obvious noise.

4 Don't use closing brace comments.

5 Don't comment out code. Just remove.

6 Use as explanation of intent.

7 Use as clarification of code.

8 Use as warning of consequences.

Source code structure

1 Separate concepts vertically.

2 Related code should appear vertically
dense.

3 Declare variables close to their usage.

4 Dependent functions should be close.

5 Similar functions should be close.

6 Place functions in the downward direction.

7 Keep lines short.

8 Don't use horizontal alignment.

9 Use white space to associate related
things and disassociate weakly related.

10 Don't break indentation.

Objects and data structures

1 Hide internal structure.

2 Prefer data structures.

3 Avoid hybrids structures (half object and
half data).

4 Should be small.

5 Do one thing.

6 Small number of instance variables.

7 Base class should know nothing about
their derivatives.

8 Better to have many functions than to pass
some code into a function to select a behavior.

9 Prefer non-static methods to static
methods.

Tests

1 One assert per test.

2 Readable.

3 Fast.

4 Independent.

5 Repeatable.

Code smells

1 Rigidity. The software is difficult to change.
A small change causes a cascade of
subsequent changes.

2 Fragility. The software breaks in many
places due to a single change.

3 Immobility. You cannot reuse parts of the
code in other projects because of involved
risks and high effort.

4 Needless Complexity.

5 Needless Repetition.

6 Opacity. The code is hard to understand.

Summary of 'Clean code' by Robert C. Martinwww.wenzlaff.de

http://www.wenzlaff.de

